Algoritma K-Means Untuk Analisis Presepsi Masyarakat Labuhanbatu Dalam Promosi Produk Berbasis Digital Pasca COVID-19
Abstract
The Labuhanbatu community who do business by promoting products utilize digital products with 142 post-covid-19 business actors where the attributes used are the use of the internet, social media, and product promotion. A total of 47 people took advantage, and as many as 95 business actors did not take advantage of product promotion opportunities. The method used for clustering is the K-Means algorithm and the process uses the CRISP-DM model. It is known that the results are processed using the rapidminer tool.
Downloads
References
V. Aris, “PENGARUH PERSEPSI KEGUNAAN DAN KETERSEDIAAN TEKNOLOGI INFORMASI TERHADAP PENERIMAAN PENGGUNAAN INTERNET PADA STISIP VETERAN PALOPO,” J. Manaj. STIE Muhammadiyah Palopo, vol. 2, no. 1, Aug. 2016, doi: 10.35906/jm001.v2i1.162.
J. Weenas, “KUALITAS PRODUK, HARGA, PROMOSI DAN KUALITAS PELAYANAN PENGARUHNYA TERHADAP KEPUTUSAN PEMBELIAN SPRING BED COMFORTA,” J. Ris. Ekon. Manajemen, Bisnis dan Akunt., vol. 1, no. 4, 2013, doi: 10.35794/emba.v1i4.2741.
R. R. Putra and C. Wadisman, “Implementasi Data Mining Pemilihan Pelanggan Potensial Menggunakan Algoritma K Means,” INTECOMS J. Inf. Technol. Comput. Sci., vol. 1, no. 1, pp. 72–77, 2018, doi: 10.31539/intecoms.v1i1.141.
N. Evelina, H. Dw, S. Listyorini, J. Administrasi, and B. Fakultas, “PENGARUH CITRA MEREK, KUALITAS PRODUK, HARGA, DAN PROMOSI TERHADAP KEPUTUSAN PEMBELIAN KARTU PERDANA TELKOMFLEXI (Studi kasus pada konsumen TelkomFlexi di Kecamatan Kota Kudus Kabupaten Kudus),” J. Ilmu Adm. Bisnis, vol. 1, no. 1, pp. 203–213, 2013.
A. Harisah and Z. Masiming, “PERSEPSI MANUSIA TERHADAP TANDA,SIMBOL DAN SPASIAL,” SMARTek, vol. 6, no. 1, 2012.
I. Binanto, Multimedia Digital - Dasar Teori dan Pengembangannya, I. Andi, 2010.
B. M. Metisen and H. L. Sari, “ANALISIS CLUSTERING MENGGUNAKAN METODE K-MEANS DALAM PENGELOMPOKKAN PENJUALAN PRODUK PADA SWALAYAN FADHILA,” JURNAL MEDIA INFOTAMA, 2015. [Online]. Available: https://jurnal.unived.ac.id/index.php/jmi/article/view/258.
N. Mara and N. S. Intisari, “PENGKLASIFIKASIAN KARAKTERISTIK DENGAN METODE K-MEANS CLUSTER ANALYSIS,” 2013.
Copyright (c) 2021 U-NET Jurnal Teknik Informatika

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






