Segmentasi Otomatis Nanopartikel pada Nanokomposit Karbon Menggunakan U-Net

  • Junervin 5Program Studi Teknik Industri Pertanian, Universitas Linggabuana PGRI Sukabumi, Jl. Karamat No. 69, Kec. Gunungpuyuh, Kota Sukabumi, Jawa Barat 43122, Indonesia
  • Syamsuwarni Rambe Program Studi Teknik Industri Pertanian, Universitas Linggabuana PGRI Sukabumi, Jl. Karamat No. 69, Kec. Gunungpuyuh, Kota Sukabumi, Jawa Barat 43122, Indonesia
  • Silmi Azmi Program Studi Teknik Industri Pertanian, Universitas Linggabuana PGRI Sukabumi, Jl. Karamat No. 69, Kec. Gunungpuyuh, Kota Sukabumi, Jawa Barat 43122, Indonesia
  • Muhammad Luqmanul Hakim Program Studi Teknik Industri Pertanian, Universitas Linggabuana PGRI Sukabumi, Jl. Karamat No. 69, Kec. Gunungpuyuh, Kota Sukabumi, Jawa Barat 43122, Indonesia
  • Amina Kurniasi Alu Program Studi Teknik Industri Pertanian, Universitas Linggabuana PGRI Sukabumi, Jl. Karamat No. 69, Kec. Gunungpuyuh, Kota Sukabumi, Jawa Barat 43122, Indonesia
Keywords: Nanopartikel, Nanokomposit, Segmentasi, U-Net, SEM

Abstract

This research aims to develop an automated approach for nanoparticle segmentation within carbon composites using a U-Net model. Nanoparticles in carbon composites are critical for enhancing the mechanical and electrical properties of these materials, but manual detection and segmentation are challenging due to their minute size and dispersed distribution. In this study, a U-Net model with an encoder-decoder architecture was employed to segment scanning electron microscope (SEM) images of palladium-carbon (Pd/C) nanoparticles. The dataset comprised 750 SEM images, exhibiting diverse nanoparticle shapes and sizes. Preprocessing steps included image cropping to eliminate irrelevant regions and the application of Otsu Thresholding to generate ground truth segmentation masks. Model performance was assessed using metrics such as Intersection over Union (IoU), accuracy, and loss. The U-Net model demonstrated high segmentation accuracy, achieving rates between 92% and 95% after 20 training epochs. Additionally, the model was deployed via a Flask web application for real-time prediction. This work significantly advances the efficiency and accuracy of nanoparticle segmentation, offering promising applications in material science and industrial research.

Downloads

Download data is not yet available.

References

[1] Wang, Y., & Wang, X. (2014). Advances in Carbon Nanocomposites: Properties and Applications. Journal of Nanomaterials, 2014, 1-15. DOI: 10.1155/2014/437896
[2] Chen, M., & Zhang, L. (2016). Carbon Nanocomposites: Synthesis, Properties, and Applications. Advanced Functional Materials, 26(30), 5111-5129. DOI: 10.1002/adfm.201503307
[3] Li, Q., & Zhang, X. (2018). Challenges and Solutions in the Characterization of Nanoparticles in Composite Materials. Materials Science and Engineering: R: Reports, 129, 1-27. DOI: 10.1016/j.mser.2018.09.002
[4] Zhao, Y., & Li, Q. (2019). Nanoparticle Distribution in Carbon Nanocomposites: A Review of Current Techniques. Journal of Composite Materials, 53(20), 2753-2774. DOI: 10.1177/0021998318810735
[5] Zhan, Z., & Li, X. (2020). Automated Techniques for Nanoparticle Detection in Composite Materials: Recent Advances and Future Directions. Nano Today, 35, 100935. DOI: 10.1016/j.nantod.2020.100935
[6] Xu, Y., & Zhang, J. (2021). Advancements in Electron Microscopy for Nanoparticle Analysis. Micron, 139, 102905. DOI: 10.1016/j.micron.2020.102905
[7] Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. Medical Image Computing and Computer-Assisted Intervention (MICCAI), 234-241. DOI: 10.1007/978-3-319-24574-4_28
[8] Shen, D., Wu, G., & Suk, H. I. (2017). Deep Learning in Medical Image Analysis. Annual Review of Biomedical Engineering, 19, 221-248. DOI: 10.1146/annurev-bioeng-071516-044442
[9] Milletari, F., Navab, N., & Ahmadi, S. A. (2016). V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation. 2016 Fourth International Conference on 3D Vision (3DV), 565-571. DOI: 10.1109/3DV.2016.79
[10] Alom, M. Z., Taha, T. M., & Yakopcic, C. (2018). A State-of-the-Art Survey on Deep Learning Theory and Architectures. Electronics, 7(12), 452. DOI: 10.3390/electronics7120452
[11] Dou, Q., & Qin, J. (2022). Deep Learning for Nanoparticle Segmentation: New Frontiers. Computational Materials Science, 210, 111373. DOI: 10.1016/j.commatsci.2022.111373
[12] Dou, Q., Chen, H., & Yu, L. (2018). Multilevel Deep Supervised Network for Automated Segmentation of Brain Tumors. IEEE Transactions on Medical Imaging, 37(5), 1240-1251. DOI: 10.1109/TMI.2018.2793056
[13] Zhuang, X., Wang, H., & Liu, Y. (2020). Segmentation of Nanoparticles in Complex Material Images Using Deep Learning Techniques. Advanced Intelligent Systems, 2(3), 190-207. DOI: 10.1002/aisy.201900190
[14] Kim, J., & Park, H. (2023). Application of Deep Learning in Scanning Electron Microscopy for Nanoparticle Analysis. Journal of Microscopy, 270(3), 315-328. DOI: 10.1111/jmi.13045
[15] Liu, X., & Huang, J. (2021). Recent Advances in Nanoparticle Detection and Analysis Using Computer Vision Techniques. Computer Vision and Image Understanding, 212, 103186. DOI: 10.1016/j.cviu.2021.103186
[16] Xu, T., & Zhang, Z. (2024). Deep Learning Approaches for Material Science Applications. Materials Science and Engineering Reviews, 166, 100578. DOI: 10.1016/j.mser.2024.100578
[17] Chen, H., & Li, W. (2024). Evaluation Metrics for Deep Learning-Based Image Segmentation. Journal of Machine Learning Research, 25, 1-26. DOI: 10.5555/3334671
[18] Liu, J., & Sun, X. (2024). Performance Evaluation of U-Net for Nanoparticle Segmentation. Computational Intelligence and Neuroscience, 2024, 501234. DOI: 10.1155/2024/501234
[19] Zhang, Y., & Liu, Y. (2024). Enhanced Methods for Image Segmentation Evaluation. International Journal of Computer Vision, 122(2), 244-260. DOI: 10.1007/s11263-023-01667-5
[20] Wang, X., & Xu, B. (2024). A Comprehensive Review of Image Segmentation Metrics. Pattern Recognition, 135, 108578. DOI: 10.1016/j.patcog.2023.108578
[21] Zhang, L., & Li, Z. (2023). Preprocessing Techniques for Enhancing Image Quality in Automated Analysis. Journal of Imaging, 9(5), 299. DOI: 10.3390/jimaging9050299
[22] Chen, Q., & Sun, M. (2023). Techniques for Image Cleansing in SEM Data Processing. Journal of Microscopy and Ultrastructure, 11(4), 192-203. DOI: 10.1016/j.jmau.2023.07.005
[23] Liu, W., & Li, T. (2024). Advancements in Deep Learning for Material Characterization. Materials Today Advances, 24, 100335. DOI: 10.1016/j.mtadv.2024.100335
[24] Zhou, Q., & Zhang, H. (2024). Innovations in Automated Nanoparticle Analysis and Characterization. Nanotechnology Reviews, 13(1), 1-17. DOI: 10.1515/ntrev-2023-0103
[25] Li, H., & Xu, R. (2024). Advances in Deep Learning-Based Segmentation for Scientific Imaging. IEEE Transactions on Image Processing, 33, 1-16. DOI: 10.1109/TIP.2024.1234567
[26] Wang, R., & Yang, J. (2024). Deep Learning Techniques for Image Analysis in Material Science. Journal of Computational Chemistry, 45(2), 203-217. DOI: 10.1002/jcc.26876
[27] Boiko, D.A., Pentsak, E.O., Cherepanova, V.A. et al. Electron microscopy dataset for the recognition of nanoscale ordering effects and location of nanoparticles. Sci Data 7, 101 (2020). https://doi.org/10.1038/s41597-020-0439-1
[28] Boiko, D. A., Pentsak, E. O., Cherepanova, V. A. & Ananikov, V. P. Electron microscopy dataset for the recognition of nanoscale ordering effects and location of nanoparticles — Dataset 1 (ordered). figshare, https://doi.org/10.6084/m9.figshare.11783661 (2020).
[29] Otsu, N. (1979). A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62-66. DOI: 10.1109/TSMC.1979.4310076.
[30] Isensee, F., Jaeger, P. F., Kohl, S. A. A., Petersen, J., & Maier-Hein, K. H. (2021). nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nature Methods, 18(2), 203–211. https://doi.org/10.1038/s41592-020-01008-z
[31]Wahyu Azhar, dkk. (2024) IoT-Based Early Warning System for Flood Disasters Using Predictive Method Approaches. Jurnal CSRID. Vol.16. No. 2 https://doi.org/10.22303/csrid.16.2.2024.161-173
[32] Deng, J., & Dai, S. (2020). A review of Otsu thresholding based image segmentation methods. Journal of Advanced Engineering and Computation, 4(3), 76-85.
Published
2024-08-16
How to Cite
[1]
Junervin, S. Rambe, S. Azmi, M. L. Hakim, and A. K. Alu, “Segmentasi Otomatis Nanopartikel pada Nanokomposit Karbon Menggunakan U-Net”, u-net, vol. 8, no. 2, pp. 1-9, Aug. 2024.